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Introduction

• Gravitational waves during inflation 

• Carry information about the energy of inflation 

• Detectable on the B-modes



16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.We know a lot about inflation and 

constraints are expected to get better 
on the next years

Planck 2015



B modes

• Quadruple distribution for the Thompson 
scattering  

• Source by the gravitational waves background 

ct 6= 1

We can also analize the case when the mode propagates with a speed di↵erent from the speed
of light. In this case the equation at matter domination is simply,

E00 +
4

⌧
E0 + (c2tk

2)E = 0 (1.6)

whose solution is only a reescale of the wavenumber

E = 3
j
1

(ctk⌧)

ctk⌧
(1.7)

Then the field will enter the horizon at a di↵erent time. This implies that the source function
will all be reescaled by the same factor. This is a similar behaviour to the one observed in
our paper, when a disformal transformation was applied to the scalar sector.

1.1.1 Superhorizon k⌧ ⌧ 1

At wavelenghts much larger than the horizon we have that k⌧ ⌧ 1 or k ⌧ aH, then we can
expand the solution as,
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Note that the first term goes to zero when the mass is zero, whereas in the case of a
massless graviton one has that the solution for the graviton is constant outside the horizon.
So what happens with this solution as ⌧ grows, It can be shown that it becomes constant
after some oscillations. This is because the graviton horizon is stretched as it has a di↵erent
e↵ective speed. This can be used to constraint m as the sound horizon on the polarization
power spectrum will be di↵erent. The solutions will oscillate as long as H is smaller than m,
then for large m there it would be more oscillations.

1.2 Subhorizon limit k⌧ � 1

Here the cos dominates over the sin and the solution becomes,

Eij = �
r

2

⇡

cos
p
k2 +m2⌧

(k2 +m2)1/4
(1.9)

Do this coincide with the results on the notes?

2 Polarization and massive graviton

First, it would be instructive to rewrite the polarization equations, and how they are modified
in the presence of a modified graviton. We will focus only on B modes for now because they
give the more primordial information, although the results for E modes are similar. The
power spectrum can be written as,

CT
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Z
k2dkPh(k)

����
Z

d⌧g(⌧) (k, ⌧)


2j0l + 4

jl
x

�����
2

(2.1)

Note that g(⌧) is the visibility function
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B modes

• Large scales,  

• Small scales neutrino damping and other 
processes take place

Massive graviton case

Now in the case of a massive graviton during matter domination we will have that the solution
is given by,

h =
92

102
1

(m⌧2)1/4
j
1/4(

m⌧2

2
) (2.6)

Where the graviton is at constant amplitude until it enters the horizon at m2⌧2/2 = 1
when the solution decays to then oscillate while damping. At some point while oscillating
the solution will not be valid but it will behave in the same way as a masless graviton as in
2.2. At large angular scales the main di↵erence is because we need to be more caregul about
the source function. Still assuming tight coupling we have that
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Assuming a Gaussian visibility function, and that source function varies slowly over the last
sattering surface over a time �⌧

rec

then,
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which in implies that the source function can be written as,
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In the case that m2⌧
rec

� k2 we can approximate ḣ(⌧r)by
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Hence we see that at large scales the transfer function k-dependence it’s only on the projection
terms. Integrating over k then we see that there is a plateu proportional to the mass, as the
e↵ect is mediated by the oscillations induced by the mass of the graviton rather than the
massless gravitational wave. We can find using the above a condition on the mass and the
scales to have an observable e↵ect
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2.2 Observability

We can calculate the mininum angular multipole l to observe e↵ects of the massive gravity.
Schematically the dispertion relation changes when k ⇡ m⇤a then for recombination we have
that

l ⇡ k(⌧
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where for zR ⇡ 1080 we have that the B-modes are not modified for masses below 300H
0

.
This fact coincides with what we calculte above the transfer function. If the mass is too
small the term proportional to ḣ

massless

h
m

dominates in the source term, and then the plateu
e↵ect is subdominant and it does not appear.
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GW background

• Matter domination 

• Important at large scales. Out of the horizon for most of 
the time 

• Radiation domination 

• More important at late times. Gravitational waves not so 
sensitive to changes into this because at recombination 
most of the are already out of the horizon



Modified gravity

• Which signatures can we probe by this.  

• On large scales, a modification of the speed and 
a mass for the gravitational field could have had 
important signatures 

• We will focus on modified tensor speed and 
graviton mass



Modified tensor speed
• Occurs in all Horndenski type modifications.  

• Changes the horizon so fields enter at a different 
time.  

• It modifies the acoustic peaks structure.  

• Changes directly proportional to the cT /c



Shifts in the 
 acoustic peaks
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FIG. 2: Left: The marginalized joint likelihood for the GWs speed of sound c2T and parameters defining the primordial tensor
power spectrum: the tensor to scalar ratio r0.002, the scalar perturbations spectral index ns and its running dns/dlnk. Di↵erent
colors correspond to di↵erent combinations of datasets and models as shown in the legend. The two di↵erent shades indicate
the 68% and the 95% confidence regions. Right: Marginalized likelihoods of the tensor perturbations sound speed for the
considered datasets and models.

will be measured by the next generation of CMB exper-
iments we create simulated datasets adopting the spec-
ifications of the Cosmic Origins Explorer (CORE) [30]
and the Polarized Radiation Imaging and Spectroscopy
Mission (PRISM) [31] satellites. We perform a Markov
Chain Monte Carlo analysis of both the current data
and the simulated data using the publicly available Cos-
moMC package [32]; in the case of forecast this allows us
to have a good handle on the degeneracies among cosmo-
logical parameters. We allow variation of the six base-
line cosmological parameters of the ⇤ Cold Dark Mat-
ter (⇤CDM) model, plus the running of the scalar spec-
tral index and the amplitude of primordial cosmological
GWs; we impose the single field inflationary scenarios to
relate the spectral index of tensors to the scalar one.

The results of this analysis for both current data and
forecast are shown in figure 2, while in figure 3 we pro-
vide a zoom of the forecasts of the cosmological param-
eters most relevant for our analysis. From panel (d) of
figure 2 we can see that the marginalized likelihood of c2T
is peaked at its GR expected value, i.e. c2T = 1 (in units
of the speed of light) when considering a model without
the running of the spectral index. Very high values of c2T
are excluded since they would move the tensor compo-
nent of the B-mode spectrum to large scales, resulting in
a poor fit of the measured data points. From panel (a) of
figure 2, we can notice that there is a degeneracy between
c

2
T and the tensor to scalar ratio assumed at a pivot scale
of 0.002Mpc�1. The reason for this degeneracy is that
those values of c2T shift the GWs contribution to the spec-
trum toward smaller scales so that the only way to fit the
data points is to change the spectrum amplitude. We can
also see from panel (b) of figure 2 that c2T is weakly degen-
erate with the spectral index due to the poor constraining
power of the BICEP2 measurements. From the combi-

nation of the Planck and BICEP2 datasets we obtain the
marginalized bound: c

2
T = 1.30 ± 0.79 and c

2
T < 2.85 at

95% C.L..
If we allow a running of the primordial tensor power

spectrum index the situation changes slightly. From
the marginalized joint likelihood of c

2
T , r0.002, ns and

dns/dln k in panels (a,b,c) of figure 2, we can see that c2T
is driven toward smaller values and this is further con-
firmed by its marginalized distribution in panel (d). The
peak of the probability distribution of c2T is found not to
be at its GR value which is however not excluded. From
the same figure we can see that as c2T goes toward smaller
values its degeneracy with r0.002 is enhanced while it is
not so pronounced with respect to the running of the
spectral index, shown in panel (c), and ns itself, shown
in panel (b). Given the skewness of the marginal distri-
bution of c2T which is also cut at c

2
T = 0 we report here

only its upper bound: c2T < 2.33 at 95% C.L..
We now turn to the forecasts to investigate further

these degeneracies and to evaluate our capability of con-
straining the speed of cosmological GWs with future gen-
eration surveys. Our results do not include any forecast
on de-lensing capability, and thus represent rather con-
servative bounds in the adopted forecast setup. Indeed
the CMB lensing signal represents the main contaminant
for measurement of primordial GWs from the BB spec-
trum and the constraining power will improve accord-
ingly to the capability of tracing this signal. The results
are shown in figure 3, with a fiducial model assumed to
be the best fit one obtained with the Planck and BICEP2
datasets. We can clearly see that increasing the accuracy
of B-mode polarisation observations removes all the de-
generacy with the other cosmological parameters since
the measurements would be able to disentangle the ef-
fect of horizontal shifting, due to changes in c

2
T , from the

Rivera et al. (2014)



Modified tensor speed

• Changes to speed are to be considered as a 
plausible modification 

• Disformal transformation does not set it to 1, but 
it can be useful to understand what are the most 
important modifications. 

Barrage, SC and Davis (2016)



Massive graviton

• Now let’s consider a massive graviton under a 
cosmological background 

• We need to consider matter domination first.

The squeezed limit of the bispectrum contains informational about the gravitational
evolution of the universe. For the temperature anisotropy it has a fixed values given by the
nonlinearities developed during early times. By looking at the hBTT i we can improve the
analisys but also to fix the terms that we have not obtained in an otherwise more contributing
manner. This paper goes as follows

1.1 General results

Massive graviton

We want to investigate the following equation for a massive graviton on a FRW background.
The mass parameter has to be compared to values of k as we are about to see,

h00 +

✓
k2 +m2a2 � a00

a

◆
h = 0 (1.1)

We will consider the mass of the graviton to be of order H
0

, which is comparable to the size of
the k at horizon crossing. The more interesting case are large wavelenghts at recombination
time. As the wavenumber is related to the multipole as k ⇡ adldl we might focus on solutions
that are at matter domination when they enter the horizon. Here we have that a / ⌧2, and
then the equation becomes,

h00 +

✓
k2 +m2⌧4 � 2

⌧2

◆
h = 0 (1.2)

To get a physical solution let’s first rewrite the equation by doing a change of variables
hj = a2Eij . Then the graviton equation becomes,

E00 +
4

⌧
E0 + (k2 +m2⌧4)E = 0 (1.3)

Reescaling m⌧3

3

= x, the equation becomes,

E00 +
2

x
E0 + (1 +

k2

m2⌧4
)E = 0 (1.4)

To specify initial conditions assuming an initial adiabatic scale invariant power specturm of
gravitational waves we note we can set h(x

ini

) = 1 . Now in the case that m2a2 � k2, the
equation simplifies and its solution is an spherical bessel function of order 0. Note that in
this solution only is constant at early times until m2a2 ⇡ 1, where it enters the horizon and
then decays.. On the other hand when m2a2 ⌧ k2, the field behaves as a massles spin-2 field
. To obtain a solution valid for a wider range of parameter we note that the massive part
modulates the massles part and we can approximate E as,

E = 3
j
1

(k⌧)

k⌧
⇥ j

0

(
1

3
m⌧3) (1.5)

Because both solutions are constant at early times it will have the right behaviour at that
time. The final solution will enter the horizon depending on whethere ma is larger or smaller
than k. We can write this as if the horizon crossing where given by 1

3

m⌧3 + k⌧ = 1. And so
we should compare this with the horizon crossing time given by k⌧ ⇡ 1

– 2 –
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• Approximated solution by, 

Massless part Massive part

Figure 1. Tensor mode solution for k = 1 and m = 1

To specify initial conditions assuming an initial adiabatic scale invariant power spectrum of
gravitational waves we note we can set h(x

ini

) = 1 . Now in the case that m2a2 � k2, the
equation simplifies and its solution is an spherical Bessel function of order 0. Note that this
solution is only constant at early times until m2a2 ⇡ 1, where it enters the horizon and then
decays. On the other hand when m2a2 ⌧ k2, the field behaves as a massless spin-2 field.
To obtain a solution valid for a wider range of parameter we note that the massive part
modulates the massless part and we can approximate h as,

h = 3
j
1

(k⌧)

k⌧
⇥ j

0

(
1

3
mH2

0

⌧3) (2.5)

Because both solutions are constant at early times it will have the right behaviour at that
time. The final solution will enter the horizon depending on whether ma is larger or smaller
than k. We can write this as if the horizon crossing where given by 1

3

mH2

0

⌧3 + k⌧ = 1. And
so we should compare this with the horizon crossing time given by k⌧ ⇡ 1. In fig.1 we can see
that the approximated solution is a very accurate, even in the case when m2a2 = k2, and it
will approximate well the horizon entry time. Nevertheless, the amplitude of the oscilations
within the horizon is supressed due to the combined oscillatory behaviour at small scales.
Here our solution di↵ers from the numerical one, but we still get the most important part
for our analysis.

2.1.2 Radiation domination

To find the solution at radiation domination we follow the same procedure. Since during this
epoch a / ⌧2 the equation is now

h00 +
2

⌧
h0 + (k2 +m2H2

0

⌧2)h = 0 (2.6)

we change variabes to x = mH
0

⌧2/2. And the equation becomes,

h00 +
3

2x
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h = 0. (2.7)
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Figure 1. Tensor mode solution for k = 1 and m = 1

To specify initial conditions assuming an initial adiabatic scale invariant power spectrum of
gravitational waves we note we can set h(x

ini

) = 1 . Now in the case that m2a2 � k2, the
equation simplifies and its solution is an spherical Bessel function of order 0. Note that this
solution is only constant at early times until m2a2 ⇡ 1, where it enters the horizon and then
decays. On the other hand when m2a2 ⌧ k2, the field behaves as a massless spin-2 field.
To obtain a solution valid for a wider range of parameter we note that the massive part
modulates the massless part and we can approximate h as,

h = 3
j
1

(k⌧)
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0

(
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Because both solutions are constant at early times it will have the right behaviour at that
time. The final solution will enter the horizon depending on whether ma is larger or smaller
than k. We can write this as if the horizon crossing where given by 1

3

mH2

0

⌧3 + k⌧ = 1. And
so we should compare this with the horizon crossing time given by k⌧ ⇡ 1. In fig.1 we can see
that the approximated solution is a very accurate, even in the case when m2a2 = k2, and it
will approximate well the horizon entry time. Nevertheless, the amplitude of the oscilations
within the horizon is supressed due to the combined oscillatory behaviour at small scales.
Here our solution di↵ers from the numerical one, but we still get the most important part
for our analysis.

2.1.2 Radiation domination

To find the solution at radiation domination we follow the same procedure. Since during this
epoch a / ⌧2 the equation is now

h00 +
2

⌧
h0 + (k2 +m2H2

0

⌧2)h = 0 (2.6)

we change variabes to x = mH
0
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B modes

• At large scales source function, 

• If second term dominates then the B- modes are 
modified at large scales

 / ḣ0hM

+ ḣ
M

h
o



• One of the terms is zero while the other is not.
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Massive graviton case

Now in the case of a massive graviton during matter domination we will have that the solution
is given by,

h =
92

102
1

(m⌧2)1/4
j
1/4(

m⌧2

2
) (2.6)

Where the graviton is at constant amplitude until it enters the horizon at m2⌧2/2 = 1
when the solution decays to then oscillate while damping. At some point while oscillating
the solution will not be valid but it will behave in the same way as a masless graviton as in
2.2. At large angular scales the main di↵erence is because we need to be more caregul about
the source function. Still assuming tight coupling we have that
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10
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(2.7)

Assuming a Gaussian visibility function, and that source function varies slowly over the last
sattering surface over a time �⌧

rec

then,
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which in implies that the source function can be written as,
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In the case that m2⌧
rec

� k2 we can approximate ḣ(⌧r)by
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) ⇡ cos(m⌧rec3
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Hence we see that at large scales the transfer function k-dependence it’s only on the projection
terms. Integrating over k then we see that there is a plateu proportional to the mass, as the
e↵ect is mediated by the oscillations induced by the mass of the graviton rather than the
massless gravitational wave. We can find using the above a condition on the mass and the
scales to have an observable e↵ect

m⌧3

k⌧
> tan
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(2.11)

2.2 Observability

We can calculate the mininum angular multipole l to observe e↵ects of the massive gravity.
Schematically the dispertion relation changes when k ⇡ m⇤a then for recombination we have
that

l ⇡ k(⌧
0

� ⌧r) = m⇥ a(⌧r) ⇡ m
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mg
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where for zR ⇡ 1080 we have that the B-modes are not modified for masses below 300H
0

.
This fact coincides with what we calculte above the transfer function. If the mass is too
small the term proportional to ḣ

massless

h
m

dominates in the source term, and then the plateu
e↵ect is subdominant and it does not appear.
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Assuming a Gaussian visibility function, and that projection factors varies slowly over the
last sattering surface over, using (3.13) and (3.14), we have that the source function becomes,
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which implies that it can be written as,
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Because we are in the regime where m2

g⌧rec
3 � k2 we can user our approximate solution (2.5)

to calculate ḣ(⌧r),

ḣ(⌧
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Now we we can calculate the power spectrum at large scales, which is given by

CB
ll =

Z

dkk2Ph(k)�
2

Bl(k) (3.24)

Let’s analise this integral. First, the primordial power spectrum is constant so it can go out
of the integral. Forthe transfer function we have that if the mass of the graviton is larger
than H

0

we can assume that the low l modes will dominate the integral, so we can assume
the Bessel functions to be constant at low l. The we only need to integrate (3.23). Therefore,
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The validity of this approximation is with respect of how big mg is with respect to H
0

as the
low l modes will be dominated by this.

Hence we see that at large scales the transfer function k-dependence it’s only on the
projection terms. Integrating over k then we see that there is a plateu proportional to the
mass, as the e↵ect is mediated by the oscillations induced by the mass of the graviton rather
than the massless gravitational wave. This means that the massive graviton will be observable
when ḣmh

0

⇡ hmḣ
0

We can find using the above a condition on the mass and the scales to
have an observable e↵ect

m⌧3

k⌧
> tan
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(3.26)

3.3 Observability

We can calculate the mininum angular multipole l to observe e↵ects of the massive gravity.
Schematically the dispertion relation changes when k ⇡ m ⇥ a then for recombination we
have that
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 small l

resolve below �⌧r > |⌧ � ⌧r| we can this will be the minimum value allowed. In the rest we
replace D = ⌧ � ⌧r = �r. Then we get

�̃(k, l) =

p

8hhhi(kz)
p

(kz)2 + l2/D2

r

g(⌧r)ḣ(⌧r)

10
e�(

p
(kz)2+l2/Dr)

2
�⌧2r /2e�ikzDr

Replacing this into (3.34), we have

hahB(l)ahB(l0)i =

Z

dkz

(2⇡)2
8hhhi(kz)2

(kz)2 + l2/D2

r

ḣ2(⌧r)

100
e�((k

z
)

2
+l2/D2

r)�⌧2r�⌧2r e
�2ikzDr�(2)(l+ l0)

(3.36)

We can approximate this integral by the stationary phase method. We can approximate up
to first order in k that the saddle point is k = �i Dr

�⌧2r
. Replacing into the integral the power

spectrum becomes,

hahB(l)ahB(l0)i = Asr
g(⌧r)ḣ2(⌧r)

100

Z

dkz

(2⇡)2
e�

5
2 log((kz)2+l2/D2

r)e
�
✓
(kz)2+ l2

D2
r

◆
�⌧2r

e�2ikzDr

(3.37)

We can approximate up to first order in l/Dr that the saddle point is k = �i Dr
�⌧2r

. Note that

the log is subdominant and we can ignore it. Then we have that,

hahB(l)ahB(l0)i =
Asr

4⇡3/2

g(⌧r)ḣ2(⌧r)

100
e
� D2

�⌧2r
� l2�⌧2r

D2
r �(2)(l+ l0)

=
Asr

4⇡3/2

g(⌧r) cos2
⇣

mg⌧3r
3

⌘

100⌧2r
e
� D2

�⌧2r
� l2�⌧2r

D2
r �(2)(l+ l0) (3.38)

Where first we have replaced hhhi = Ark�3 with A the amplitude of primordial scalar
perturbations and r the tensor to scalar ratio, and in the last line we have used (3.23).

This result implies that the modes will stay constant until l ⇡ 100. Although this result
is very simplified it shows that the oscillations gravitational waves modify strongly the power
spectrum. Note that the damping e↵ect is independent of the mass of the graviton. This
will imply that for masses that are two small there it will be no detectable e↵ect. Assuming
that mg⌧3/3 < 1 we can expand which implies that for

mg⌧
3/3� D2

�⌧2r
< +

l2�⌧2r
D2

r

(3.39)

The e↵ects of the mass are negligible.

4 Bigravity

The most consistent models of massive graviton predicts the existence of at least two graviton
modes with di↵erent masses. Usually one is a massless and the other is massive and its
coupling to matter varies. We are dealing with di↵erent bigravity models, where the crucial
di↵erence is how they couple to matter. Schematically the coupling will be given by

Signal / [
1

⇥ h
1

+ 
2

⇥ h
2

]2 (4.1)
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large l

We can solve analytically in some limits

Plateau

Decaying at large l



• We can only probe a range of masses where the 
second term dominates 

• It is limited but still can give a very good bound 
on the graviton mass 

• Because                                 , a no detection will 
imply 

Hrec ' 3⇥ 10�29eV

mg < 3⇥ 10�29eV

Flauger et al. (2009)



Bigravity

• Lorentz invariant massive gravity will require us 
to consider more than one graviton. 

• What if we have more than  one graviton, how 
much does the analysis we have change?. 

• It is tricky as the effect might be smaller



Bigravity 

• In general the theory has one light graviton 
coupled to the mass 

• This means that the Boltzmann equation has to 
consider both fields. As we have described on 
large scales this implies that the signal is 
proportional to 

2.7 E↵ects of massive graviton on the B modes

We now analize possible e↵ects of the massive graviton on the B modes. To start the main
di↵erence will be that the mass will change the dispertion relation and thus for masses of the
size of the horizon at recombination the graviton will be non relativistic. Therefore one can
take the limit in which this happens to further analize other possibilities.

2.7.1 Coupling to matter

We are dealing with di↵erent bigravity models, where the crucial di↵erence is how they couple
to matter. Schematically the coupling will be given by

Signal / [
1

⇤ h
1

+ 
2

⇤ h
2

]2 (2.28)

Normally in bimetric either h
1

is massless and it does not contribute, and 
2

⌧ 1 so the
signal from massive gravity is very weak. On the other hand for doubly coupled massive
gravity we have that

Signal / [�
1

⇤ h
1

+ �
2

⇤ h
2

]2 (2.29)

with �
1,2 generally di↵erent from zero. It is leave open the question how can we measure its

values from this setup. Also how will be the equations modified. I think that it should be a
di↵erent coupling to the Boltzmann equations.

2.8 Things to study

hBTT i in the squeezed limit does it contains information about the graviton mass?

3 Bigravity

The most consistent models of massive graviton predicts the existence of at least two graviton
modes with di↵erente masses. Usually one is a massles and the other is massive and its
coupling to matter varies. We are dealing with di↵erent bigravity models, where the crucial
di↵erence is how they couple to matter. Schematically the coupling will be given by

Signal / [
1

⇤ h
1

+ 
2

⇤ h
2

]2 (3.1)

Normally in bimetric either h
1

is massless and it does not contribute, and 
2

⌧ 1 so the
signal from massive gravity is very weak. On the other hand for doubly coupled massive
gravity we have that

Signal / [�
1

⇤ h
1

+ �
2

⇤ h
2

]2 (3.2)

with �
1,2 generally di↵erent from zero. It is leave open the question how can we measure

its values from this setup. Also how will be the equations modified. This implies that the
source function is now seeded by the two gravitons. Hence on large scales we will have that,

 ⇡
h
�
1

⇤ ḣ
1

+ �
2

⇤ ḣ
2

i
2

(3.3)

Then we can analise the e↵ect by using the approximations we hace been discussing. This
will imply that because the massless graviton contribution is zero on large scales even for a
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• In the case of bigravity  

• This implies that the effect from the mass is 
suppressed for the B-modes 

• Then is easier to look at the Bispectrum, 

from the one concerning the other d.o.f.s. Indeed, no matter how e�cient the screening of scalars
and vectors, the two copies of the tensors at hand can be safely considered unscreened. The act of
normalizing things “as usual” for inflation and considering the tensors diagonalized from the onset
of the LEL may be insensitive to part of the dynamics which goes beyond the LEL regime7, as is
exemplified by the work in [40, 78], which respectively focused on di↵erent branches of solutions.

Working at lowest order in perturbations, the simplified action for the tensor modes becomes

S
(2)

tensors

=
1

8

Z
d4x a3

"
M2

+

 
Ḣ ij

+

Ḣ+

ij +
H ij

+

a2
r2H+

ij

!

+M2

�

 
Ḣ ij

� Ḣ�
ij +

H ij
�

a2
r2H�

ij �m2

e↵

H ij
�H�

ij

!#
. (3.5)

As we shall see shortly, it is this mass parameter m
e↵

associated with the tensor modes which
enters observable quantities and which can be used to constrain the parameters of the theory. The
normalisation of the kinetic terms is set by the mass scales M

+

and M� given by

M2

+

⌘ (1 +  ⇠2c )M
2

g and M2

� ⌘  ⇠2c
(1 +  ⇠2c )

2

M2

+

. (3.6)

In perturbation theory the matter Lagrangian (2.20) is given, to lowest order, by

�S
matter

=

Z
d4x hµ⌫T

µ⌫ . (3.7)

The usefulness of the {+,�} basis is clear: H+

ij is the massless mode whereas the massive mode

is H�
ij . In light of our choice of coupling to matter (3.7), photons do not couple to a massive nor

massless graviton. Instead, they couple to a linear combination of massive and massless modes in the
diagonal basis described in Eq. (3.5). Importantly, the massive mode is associated with a redressed
mass m

e↵

, which albeit related, is not the graviton mass.
In terms of the diagonalised variables of Eq. (3.4), the coupling to the matter sector is

�S
matter

=

Z
d4x

⇢
H+

ij +
 ⇠2c

1 +  ⇠2c
H�

ij

�
T ij . (3.8)

This means that gravity and the history of the universe will, in principle, change. To guarantee that
the cosmology remains invariant so as to agree with ⇤CDM and to reproduce the Newtonian limit,
we need to require that the Planck mass (or equivalently the Newton’s gravitational constant) is
essentially the same as measured in solar system scales. Consider two mass tests described by the
energy-momentum tensor above and subject to gravity set by this matter coupling. One may easily
derive that the e↵ective Planck mass associated with this modified gravitational force is actually the
Planck mass associated with the metric gµ⌫ :

M
Pl,e↵ ⌘ Mg . (3.9)

7This is important because the coupling among the tensor modes, although very small, in time can have significant
e↵ect once higher order in perturbations are taken into account. This again points to the importance of the initial
value problem as emphasized in [40]. See also [42] for a step in this direction. Note that the scales probed by [42] are
far beyond the reach of the LEL regime.
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So far, all we have assumed within the LEL was that ⇠c ⇠ O(1), but there were no stringent
constraints on the value allowed for . If we demand the cosmological evolution to be the same for
most of cosmic history, as well as negligible modifications to the Newton’s gravitational constant,
then from the Friedmann equation (2.19), we ought to require

 ⌧ ⇠�2

c ⇠ O(1) . (3.10)

Considering the uncertainty associated with the empirical determination of the value of the
Newton’s gravitational constant, we estimate  to be 1 part in 100, 000. One might be worried by
the realization that this regime corresponds to a small Mf ⌧ MP l. This results, in turn, in the
lowering of the naive strong coupling scale (m2Mf )1/3 ⌘ ⇤

3,f .8 This worry is legitimate and we just
note here that the scale we are negotiating with is that of Hr. One can easily check that even if the
strong coupling scale is as low as ⇤

3,f , the theory is still predictive at the time of recombination, for
which the graviton mass can be chosen such that H

r

⌧ ⇤
3,f , a condition which is automatic in the

LEL regime.

Other d.o.f.— Before proceeding with the study of observables related to tensor perturbations we
pause here to comment on the role played by the other degrees of freedom in our setup. Clearly
massive gravity alone already spans 5 d.o.f. whose e↵ect on cosmological evolution up to recombina-
tion must be accounted for. So far we have largely neglected the dynamics of the scalar (helicity-0)
and vector (helicity-1) sector. Their dynamics has already been the subject of careful investigations
at the lowest orders in perturbation theory hinting at early(late) time instabilities. However, such
an analysis may or may not capture the full physical picture, especially if limited to low orders in
perturbation theory. It has further been suggested that a way around these issues may be found
in a restricted pool of favourable initial conditions and that the so-called initial value problem for
bigravity needs further study [40] (see also Ref. [81] for related work). We can only but agree on
this latter point. A step in this direction was taken in [42] where initial conditions are discussed in
an inflationary context. This implicitly assumes that the e↵ective strong coupling scale is as high as
H

inf

.
In this manuscript we take the view that, as is often the case in solar system dynamics, an

e�cient9 Vainshtein mechanism will make use of the non-linearities of the theory to milden the role
played by the scalar(vector) sector in the cosmological evolution, e↵ectively screening them. Although
suggestive results are present in the literature, at this level this is indeed just an assumption we make
here, and not a small one at that.

We now turn to the observable spectrum arising in this bigravity model. The coupling in
Eq. (3.8) dictates the power transmitted by the tensor modes (both from the massive and the
massless spin-2 fields) to the CMBR photons. Before presenting the formula for r, we make a short
digression into the power spectra of massive and massless tensor modes which would individually be
imprinted in the CMBR. For bigravity theories, the power spectrum will be a composite measure of
both signals. For the purposes of our estimates, it su�ces to work at lowest order in the slow-roll
approximation, which is assumed to hold throughout inflation.

Power spectrum of massless modes.—The analysis of the perturbation theory for massless tensor
modes is well known in the literature [82]. In bigravity theories, the massless mode is represented

8Here we are focusing on the case when the strong coupling scale can be as low as (m2Mf )
1/3. Being a very low

scale, this could prove di�cult for the phenomenology at and above that energy scale.
9Incidentally, we note that an active screening in the LEL demands [55] that |dlnJ(⇠)/dln(⇠)| � 1, see Table 1.
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with Fassiello and Ribeiro (2015)



Doubly coupled

• Then it’s obviously easier. One can have two 
modes and then if both are coupled the speed 
does not change but the overall effect is small 

• Conditions is on the source functions 

• The plateau does not disappear but is effect 
mildered

Brax, Davis and Noller



Bigravity

• The couplings changes, so the contribution to 
the source function can be larger 

• Couplings now  

• We assume that the mass matrix is 

Then during matter domination since a / ⌧2, we have that the above eq becomes,

h00
1

+

✓

k2 +M2

11

⌧4 � 2

⌧2

◆

h
1

+M2

12

h
2

= 0

h00
2

+

✓

b2k2 +M2

22

⌧4 � 2

⌧2

◆

h
2

+M2

21

h
1

= 0 (4.3)

We want to find a particular combination of the two gravitons that gives an equation of the
form

f 00 +

✓

k2 +M2

f ⌧
4 � 2

⌧2

◆

f = 0 (4.4)

where f = ↵h
1

+ �h
2

. Replacing into the last equation yields to two di↵erential eqs for ↵
and �. Assuming that they are constant implies that,

↵(M2

f �M2

11

)� �M2

12

= 0

�(k2(1� b2) +M2

f �M2

22

)� ↵M2

21

= 0 (4.5)

Solving this we can now we can obtain the values for Mf

2M2

f = (b2 � 1)k2 +M2

11

+M2

22

±
q

4M2

12

M2

21

+ ((b2 � 1)k2 +M2

11

�M2

22

)2 (4.6)

We can analise the value of the masses and then compare with other regimes to see if it
coincides. Let’s check the case when b = 1 and the diagonal masses are zero. Then we have
that the two modes have masses,

M2

f = M
11

or M2

22

(4.7)

Also interestingly in the case when one of the mode is masless we hace that,

b =
M2

11

M2

22

�M2

12

M2

21

M2

11

⌧4

k2
(4.8)

Also let’s check the value chosen by Fasiello and Ribeiro

4.0.1 Coupling to matter

�S
matter

=

Z

d4x
n


1

h(1)ij + 
2

h(2)ij

o

T ij (4.9)

– 10 –

✓
M2

11a
2 M2

21a
2

M2
12a

2 M2
22a

2

◆



h0 ′

b hM′ +h0 ′

10-4 0.001 0.010 0.100

-1.5

-1.0

-0.5

0.0

0.5

1.0

k [Mpc-1 ]

Tr
an
sf
er
fu
nc
tio
ns

50 100 500 1000
0.5

1

5

10

l

l(l
+1

)C
l/C

l0 Plateau behaviour 

Doubly  
coupled



• We diagonalise the mass matrix, and assume for 
simplicity that its determinant its 0 

• We get two gravitons with masses 0 and  

• Coupling to matter is then 

• In general both graviton will matter

M2
11 +M2

22

2

5.1 Coupling to matter

Now whether they can lead to an imprint on the B-modes power spectrum will depend on
how they source the polarization, which is what will analise now. The coupling is similar
to the bigravity case but here we will have that both couplings might be of the same order.
This implies that for the light and heavier gravitons we have

�S
matter

= M
Pl

2

Z

d4xaJ
n

�
1

a
1

E(1)

ij + �
2

a
2

E(2)

ij

o

T ij (5.9)

where aJ = �
1

a
1

+ �
2

a
2

. This will imply that there it might be a large e↵ect of the massive
graviton when the couplings are not very suppressed. To get an insight let’s perform the
diagonalisation we were describing in the past section, the it follows that if one the modes is
massless, then we have that � = 0, so we get that

�E
1

=
M2

21

M2

11

+M2

22

(f
0

� fm)

�E
2

=
M2

22

fm +M2

11

f
0

M2

11

+M2

22

(5.10)

Then in terms of Jordan frame the gravitons are coupled to matter as,

�S
matter

= M2

Pl

Z

d4xaJ

(

�
1

a
1

M2

21

M2

11

+M2

22

�

f0

ij � fm
ij

�

+ �
2

a
2

M2

22

fm
ij +M2

11

f0

ij

M2

11

+M2

22

)

T ij(5.11)

Where we have reintroduced the tensorial indices. If we assume that �
1

a
1

= �
2

a
2

This
reduces to

�S
matter

= M2

Pl

Z

d4xaJ
�a

M2

11

+M2

22

�

(M2

21

+M2

11

)f0

ij + (M2

21

�M2

22

)fm
ij

 

T ij (5.12)

To fix � we note that the solution for both gravitons to match inflation in the past. Because
the solutions is constant of value 1 out of the horizon we get that � = M11

2
+M22

2

2M2
12+M2

11�M2
22
. Which

implies that the solution is,

�S
matter

= M2

Pl

Z

d4xaJ
aM2

12

2M2

12

+M2

11

�M2

22

�

(1 +M2

11

/M2

12

)f0

ij + (1�M2

22

/M2

21

)fm
ij

 

T ij

(5.13)

First note that the massive part of the gravitons fm dissapear only if M2

22

/M2

21

⇡ M2

11

/M2

12

⇡
1 which is the case of [3], but in general the coupling does not have to be small and there it
will be an imprint of the massive graviton in the B-modes. Let us define

 =
M2

21

�M2

22

M2

11

+M2

22

. (5.14)

In general we have that, without fine tuning the coupling of the massive part does not
disappear although one can think that might be smaller. One can think a case when there is
an element of the mass matrix which is much bigger than the others, eg. M2

11

in which case
the relative of the size of the couplings could also lead to a smaller e↵ect. In (4) we have
plotted the power spectrum produced by (5.13) for di↵erent absolute values of the couplings.
It is easy to see that if the combination  ⌧ 1 the e↵ect of any massive graviton will be
strongly supressed, but this is not necessarily the case. This is in opposition to the results
of ([3]) where it was shown that for their combination  was always very small so the e↵ect
of a massive graviton was not detectable using the CMB.
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Figure 4. CB
ll for di↵erent values of 

5.2 Instabilities

To give a proper account of bigravity models we need to discuss the instabilities that appears
when the theory is coupled to matter. These are pressure dependent terms that which read
as,

�Sp =
1

8

Z

d4x
p
�g�Tij�g

ij (5.15)

Where the parameters are described in [6]. It turns out that there is a pressure matrix mass
of the form,

�Mp =
3!a2jH

2

j

�
1

+ �
2

✓

��2

2

�
1

�
2

�
1

�
2

��2

1

◆

(5.16)

Which has a zero mass eigenstate and a eigenmode of negative mass

m2

G = �3!2

ja
2

jH
2

j < 0 (5.17)

So it is only present during radiation domination where it will produce a mild instability. To
analyse its e↵ect we solve the equation for a massive graviton during radiation domination,

h00 + 2Hh0 + (k2 +m2a2 � a2H2)h = 0. (5.18)

Because during radiation domination we have that a / ⌧2, the equation reduces to,

h00 +
2

⌧
h0 + (k2 +m2⌧2 � 1

⌧2
)h = 0. (5.19)
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Instability

• The mass matrix is  modified if we consider the 
coupling to pressure  

• Which introduces a mild instability during 
radiation domination. 

 
M2

11a
2 � �22

(�12+�22)3!(aH)2 M2
21a

2 + �1�2
(�12+�22)3!(aH)2

M2
12a

2 + �1�2
(�12+�22)3!(aH)2 M2

22a
2 � �12

(�12+�22)3!(aH)2

!



• Considering a massive mode instable mode its 
solution is  
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Figure 5. CB
ll for two values of the mass component including the instablities. On the left there is a

large mass compared to k during matter domination whereas on the right it is small. The plots below
are not normalized and it’s noticeable the di↵erences betwen the amplitudes

Whose solution can be approximated by,

h / (mH
0

⌧2/2)1/4j�1/4(mH
0

⌧2/2)
⇣

j
0

(k⌧) + j
1/2(�1+

p
5))

(k⌧)
⌘

(5.20)

To get the full solution we can assume that the time of matter and radiation domination was
instantaneous, and then the solution will be

h =

(

(mH
0

⌧2/2)1/4j�1/4(mH
0

⌧2/2)
⇣

j
0

(k⌧) + j
1/2(�1+

p
5))

(k⌧)
⌘

⌧ < ⌧eq

3 1

k⌧ ⇥ j
0

(1
3

mH2

0

⌧3) (Aj
1

(k⌧) +By
1

(k⌧)) ⌧ > ⌧eq
(5.21)

Where A and B could be found by matching the solution and its derivative at h(⌧eq). For
other more realistic approaches see [2], where the WKB solution are used.

We use or code to compute the B-modes associated to this new solution, which is plotted
in fig.6. It is noticeable that the e↵ect of the instability is present at large l changing the
behaviour of the power spectrum. As expected at low l the CMB is dominated for modes
which are out of the horizon at matter domination, when the instability is not present.
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Coupling to matter
• We can solve the equations for the mass matrix in 

the case  that, 

• We get a massless mode unstable at radiation 
domination and a stable massive mode 

In the case of the equality we have two solutions, Mf = 0 and Mf = M2

11

+ M2

22

+ 1/⌧4,
which implies that there is a massles graviton but with the instability and another massive
without the instability.. To simplify (5.24) let us define M̃ij = Mij +

�i�j

�2
1+�2

2

1

⌧4
, in which case

when (5.29) is saturated we have that

↵(M̃f
2 � M̃2

11

)� �M̃2

12

= 0

�
⇣

M̃2

f � M̃2

22

⌘

� ↵M̃2

12

= 0 (5.30)

Which is equivalent to the case whithout instability, then we can use the results from (5.10)
to write

�E
1

=
M̃2

21

M̃2

11
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22

(f
0

� fm)

�E
2

=
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22
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M̃2

11

+ M̃2

22

(5.31)

We can again use the results from the past sections and the analogously to (5.13) we have
that,

�S
matter
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�
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22
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(M̃2
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T ij ,

which written in terms of Mij is equal to
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Z
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a�
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(5.32)

Now to fix the coe�cient � we use again that after inflations modes freezes out and that the
solutions for f

0

and fm are equal to one out of the horizon to get,
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(5.33)

This result although looks rather complicated is a generalisation of (5.13), but in radiation
domination. Henceforth during matter domination when the instability disappears it will
also be valid. We can write it for all epochs as,
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(5.34)
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• Instability increases the amplitude of the power 
spectrum. 

• It cannot be removed by fine-tuning the mass 
parameters 

• if r is very low the signal could still be within the 
current limits



Conclusions

• If B-modes are detected we can learn a lot 
about gravity as well. 

• It will impose good bounds if we allow the 
graviton to vary its mass and speed 

• We can also look at the bispectrum to improve 
our constraints




